Robust and Hierarchical Stop Discovery in Sparse and Diverse Trajectories
نویسندگان
چکیده
The advance of GPS tracking technique brings a large amount of trajectory data. To better understand such mobility data, semantic models like “stop/move” (or inferring “activity”, “transportation mode”) recently become a hot topic for trajectory data analysis. Stops are important parts of trajectories, such as “working at office”, “shopping in a mall”, “waiting for the bus”. There are several methods such as velocity, clustering, density algorithms being designed to discover stops. However, existing works focus on well-defined trajectories like movement of vehicle and taxi, not working well for heterogeneous cases like diverse and sparse trajectories. On the contrary, our paper addresses three main challenges: (1) provide a robust clustering-based method to discover stops; (2) discover both shared stops and personalized stops, where shared stops are the common places where many trajectories pass and stay for a while (e.g. shopping mall), whilst personalized stops are individual places where user stays for his/her own purpose (e.g. home, office); (3) further build stop hierarchy (e.g. a big stop like EPFL campus and a small stop like an office building). We evaluate our approach with several diverse and spare real-life GPS data, compare it with other methods, and show its better data abstraction on trajectory.
منابع مشابه
Robust Estimation in Linear Regression with Molticollinearity and Sparse Models
One of the factors affecting the statistical analysis of the data is the presence of outliers. The methods which are not affected by the outliers are called robust methods. Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers. Besides outliers, the linear dependency of regressor variables, which is called multicollinearity...
متن کاملWeighted-HR: An Improved Hierarchical Grid Resource Discovery
Grid computing environments include heterogeneous resources shared by a large number of computers to handle the data and process intensive applications. In these environments, the required resources must be accessible for Grid applications on demand, which makes the resource discovery as a critical service. In recent years, various techniques are proposed to index and discover the Grid resource...
متن کاملTraffic Scene Analysis using Hierarchical Sparse Topical Coding
Analyzing motion patterns in traffic videos can be exploited directly to generate high-level descriptions of the video contents. Such descriptions may further be employed in different traffic applications such as traffic phase detection and abnormal event detection. One of the most recent and successful unsupervised methods for complex traffic scene analysis is based on topic models. In this pa...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملAnalyzing Stop Time Phase Leading to Congestion Based on Drivers’ Behavior Patterns
Traffic oscillation, stop and go traffic, is created by different reasons such as: sudden speed drop of leader vehicle. Stop and go traffic commonly is observed in congested freeways results in traffic oscillation. Many theories had been presented to define congestion traffic based on laws of physics such as: thermodynamics and fluid. But, these theories could not explain the complexity of driv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010